Halo20, 20+ and 24 Dome Radars
Installation Manual
Preface

Disclaimer
As Navico is continuously improving this product, we retain the right to make changes to the product at any time which may not be reflected in this version of the manual. Please contact your nearest distributor if you require any further assistance.

It is the owner’s sole responsibility to install and use the equipment in a manner that will not cause accidents, personal injury or property damage. The user of this product is solely responsible for observing maritime safety practices.

NAVICO HOLDING AS AND ITS SUBSIDIARIES, BRANCHES AND AFFILIATES DISCLAIM ALL LIABILITY FOR ANY USE OF THIS PRODUCT IN A WAY THAT MAY CAUSE ACCIDENTS, DAMAGE OR THAT MAY VIOLATE THE LAW.

This manual represents the product as at the time of printing. Navico Holding AS and its subsidiaries, branches and affiliates reserve the right to make changes to specifications without notice.

Governing language
This statement, any instruction manuals, user guides and other information relating to the product (Documentation) may be translated to, or has been translated from, another language (Translation). In the event of any conflict between any Translation of the Documentation, the English language version of the Documentation will be the official version of the Documentation.

Copyright
Copyright © 2019 Navico Holding AS.

Warranty
The warranty card is supplied as a separate document.
In case of any queries, refer to the brand web site of your display or system:
www.lowrance.com
www.simrad-yachting.com
www.bandg.com

Compliance statement

Europe
This equipment complies with CE under RED Directive 2014/53/EU. The relevant Declaration of conformity is available in the product’s section at the following websites:
www.lowrance.com
www.simrad-yachting.com
www.bandg.com

United States of America
Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

⚠️ Warning: The user is cautioned that any changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

RF emissions notice
This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.
This device’s antenna must be installed in accordance with provided instructions, and it must
be operated with minimum 0.1 m (0.33 ft) for Halo24 and 1.0 m (3.30 ft) for Halo20+ spacing between the antennas and all person’s body (excluding extremities of hands, wrist and feet) during operation.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that the interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that of the receiver is connected
- Consult the dealer or an experienced technician for help

Canada
This device complies with Industry Canada’s license-exempt RSSs. Operation is subject to the following two conditions:

1. This device may not cause interference; and
2. This device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions suivantes:

1. L’appareil ne doit pas produire de brouillage, et.
2. L’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

Industry Canada Statement
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

Conformément à la réglementation d’Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d’un type et d’un gain maximal (ou inférieur) approuvé pour l’émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l’intention des autres utilisateurs, il faut choisir le type d’antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l’intensité nécessaire à l’établissement d’une communication satisfaisante.

This radio transmitter (identify the device by certification number, or model number if Category I) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Le présent émetteur radio (identifier le dispositif par son numéro de certification ou son numéro de modèle s’il fait partie du matériel de catégorie I) a été approuvé par Industrie Canada pour fonctionner avec les types d’antenne énumérés ci-dessous et ayant un gain admissible maximal et l’impédance requise pour chaque type d’antenne. Les types d’antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l’exploitation de l’émetteur.
Halo Antennas	Max. permissible antenna gain (dBi)	Impedance
Halo 20 Radar | 22.5 dBi | Not applicable
Halo20+ Radar | | |
Halo24 Radar | 23.5 dBi | |

Radio Frequency (RF) Exposure table

<table>
<thead>
<tr>
<th>System</th>
<th>100 W/m² occupational safe distance</th>
<th>10 W/m² public safe distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halo20 Radar</td>
<td>0.0 m (0.0 ft)</td>
<td>0.0 m (0.0 ft)</td>
</tr>
<tr>
<td>Halo20+ Radar</td>
<td>1.0 m (3.30 ft)</td>
<td>1.0 m (3.30 ft)</td>
</tr>
<tr>
<td>Halo24 Radar</td>
<td>0.1 m (0.33 ft)</td>
<td>0.1 m (0.33 ft)</td>
</tr>
</tbody>
</table>

Trademarks

Navico® is a registered trademark of Navico Holding AS.
Lowrance® is a registered trademark of Navico Holding AS.
Simrad® is used by license from Kongsberg.
B&G® is a registered trademark of Navico Holding AS.

About this manual

This manual is a reference guide for installing the Halo dome radar.
Important text that requires special attention from the reader is emphasized as follows:

⇒ **Note:** Used to draw the reader’s attention to a comment or some important information.

⚠️ **Warning:** Used when it is necessary to warn personnel that they should proceed carefully to prevent risk of injury and/or damage to equipment/personnel.
Contents

3 Preface
 3 Disclaimer
 3 Copyright
 3 Warranty
 3 Compliance statement
 5 Radio Frequency (RF) Exposure table
 5 Trademarks
 5 About this manual

7 Introduction
 7 Parts included

8 Installation
 8 Wiring guidelines
 9 Choose the scanner location
 10 Considerations for roof mounting
 13 Wiring overview
 14 Scanner connection
 15 Installing the scanner
 16 Ethernet connection
 18 Power connection
 19 Power control connection

20 Setup and configuration

21 Maintenance

22 Replacing a Broadband 3G/4G Radar
 22 RI-10 Radar interface box and wiring

23 Troubleshooting
 23 Status LED
 23 Error messages
 24 Error codes

25 Dimensional drawings
 25 Halo dome radar dimensions

27 Technical specifications
 27 Halo20/20+ Radar
 28 Halo24 Radar

29 Accessories
Introduction

Parts included

A Halo Radar
B Mounting bolts and washers
 Hex bolt (M8x30), 4x
 Flat washer, 4x
 Spring washer, 4x
C Documentation pack
D Interconnection cable
E Ethernet adapter RJ45 to 5-pin, 1.5m (4.9 ft)
F Waterproof cable boot for interconnection cable RJ45 plug
G Cable retainer kit
 Cable retainer clip, 2x
 Screw (Phillips drive), 4x
Installation

⇒ Note: The Halo Radar is factory sealed. Removing the cover will void the factory warranty.

⇒ Note: If replacing an already installed Broadband 3G/4G Radar, refer to “Replacing a Broadband 3G/4G Radar” on page 22.

Wiring guidelines

Safely pulling the interconnection cable

- Connect a mouse line to the outer jacket of the radar interconnection cable so that the strain of pulling is transferred to the stronger outer jacket of the cable. Use some small cable ties to secure the mouse line to the outer jacket as well if there is sufficient clearance.
- Tape the conductors and tape the RJ45 connector to the mouse line so that it does not get caught and bent backwards.

A Mouse line
B Electrical tape
C Cable tie

Do:
- make drip and service loops
- use cable-ties on all cables to keep them secure
- solder/crimp and insulate all wiring connections if extending or shortening the cables
- use the appropriate length of ready-made interconnection cable
- leave room adjacent to device to ease plugging and unplugging of connectors

Do not:
- make sharp bends in the cables
- run cables in a way that allows water to flow down into the connectors
- run the data cables adjacent to radar, transmitter, or large/high current carrying cables or high frequency signal cables
- run cables so they interfere with mechanical systems
- run cables over sharp edges or burrs
- attach a mouse line directly to the Ethernet cable or connector

⚠️ Warning: Before starting the installation, be sure to turn electrical power off. If power is left on or turned on during the installation, fire, electrical shock, or other serious injury may occur.

⚠️ Warning: The positive supply wire (red) should always be connected to (+) DC with the supplied fuse or a circuit breaker (closest available to fuse rating). Be sure that the voltage of the power supply is compatible with the unit.
Choose the scanner location
The radar’s ability to detect targets greatly depends on the position of its scanner. The ideal location for the scanner is high above the vessel’s keel line where there are no obstacles. When you are deciding on the location, consider the following:

A higher installation position increases the radar ranging distance, but it also increases the minimum range around the vessel where targets cannot be detected. Higher installation height also reduces the ability of the radar to detect targets in sea clutter.

The length of the interconnection cable supplied with your radar is sufficient for the majority of installations. If you think you’ll need a longer cable, consult your dealer before installation. Optional cable lengths are 5 m (16 ft), 10 m (33 ft), 20 m (65.5 ft) and 30 m (98 ft).

If you mount the scanner on a pedestal or base, ensure that rain and sea spray can drain away rapidly, and the breather hole (A) in the base can operate.

The scanner should, where possible, be installed parallel to the line of the keel.

Do not install the scanner:
• directly on to a large flat roof area. Use a pedestal to elevate the scanner so the radar beam clears the roof line. Refer to “Considerations for roof mounting” on page 10
• too high up (eg at the top of a mast), which may cause degradation of the radar picture over short ranges
• close to lamps or exhaust outlets. The heat emissions may damage the dome. Soot and smoke will degrade the performance of the radar
• close to the antennas of other equipment such as direction finders, VHF antennas, GPS equipment, as it may cause or be subject to interference
• where a large obstruction (such as an exhaust stack) is at the same level as the beam, the obstruction is likely to generate false echoes and/or shadow zones
• where it will be subjected to strong vibrations. Vibrations could degrade the performance or service life of the radar

⚠️ Warning: For dual radar installations, ensure the Halo Radar is not installed in the beam of a pulse radar at any time.
Minimum distance to install near the ships compass is 0.7 m (2.3 ft).

Do not install the Halo Radar on the same beam plane as a conventional pulse radar. A pulse radar must be set to STBY or OFF any time the Halo Radar is being operated.

If possible, ensure that the mounting location provides the scanner with a clear view all round the vessel.

If installed on power boats that have a steep planing angle, it is recommended to tilt the scanner angle down at the front.

Considerations for roof mounting

When deciding a suitable mounting location for the Halo Radar, be aware that the vertical radar beam extends 25° above and below horizontal for Halo20/20+ and 22° above and below horizontal for Halo24. 50% of the power projects in a beam 12.5° above and below horizontal for Halo 20/20+ and 11° above and below horizontal for Halo24. If the radar beam cannot clear the roof line, this will decrease performance of the radar. Depending on the size of the hard top of the vessel, it is recommended to elevate the antenna to allow the radar beam to clear the roof line.

Note: Where the mounting surface is constructed of any form of metal you must elevate the radar so that the beam has complete clearance, as per Optimum performance section, else performance will be severely impaired.

Determine scanner height

This is a guide to determine scanner height in relation to the furthest forward corner of the hard top.

Measure the distance (A) from the Halo Radar to the furthest forward corner of the hard top.

Use the following illustrations to determine the height of the scanner in relation to distance (A).
Possible performance loss

Above illustrates an installation with the Halo Radar mounted directly on to a large hard top. This installation could suffer decreased performance as the radar energy is either reflected or absorbed by the hard top.

Note: Where the mounting surface is constructed of any form of metal you must elevate the dome so that the beam has complete clearance, else performance will be severely impaired.

Good performance

The image above illustrates that raising the radar scanner off the hard top allows most of the radar energy to clear the hard top.

Halo20/20+ Radar

For every increase of 200 mm (7.87") of dimension (A), increase the height (B) by 45 mm (1.77").

Halo24 Radar

For every increase of 200 mm (7.87") of dimension (A), increase the height (B) by 40 mm (1.57").
Optimum performance

For best performance, the radar should be positioned to allow the full beam to clear the superstructure of the boat.

Halo20/20+ Radar

For every increase of 200 mm (7.87") of dimension (A), increase the height (B) by 90 mm (3.54").

Halo24 Radar

For every increase of 200 mm (7.87") of dimension (A), increase the height (B) by 80 mm (3.14").
Halo light

Note: Only available for Halo20+ and Halo24 Radars.

The Halo Radar has a blue accent light that can be activated from the display unit. Refer to “Setup and configuration” on page 20.

⚠️ **Warning:** Halo Radar’s lighting may not be approved for use in your boating location. Please check your local boating regulations before turning the blue accent lights ON.

Wiring overview

Run the interconnection cable between the scanner and the display unit or Ethernet switch.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Halo Radar</td>
</tr>
<tr>
<td>B</td>
<td>Scanner connector</td>
</tr>
<tr>
<td>C</td>
<td>Interconnection cable</td>
</tr>
<tr>
<td>D</td>
<td>Ethernet connector</td>
</tr>
<tr>
<td>E</td>
<td>Power wires</td>
</tr>
<tr>
<td>F</td>
<td>Ethernet adapter RJ45 to 5-pin (optional)</td>
</tr>
</tbody>
</table>
Scanner connection

- **Note:** If replacing an existing Broadband 3G/4G Radar, refer to “Replacing a Broadband 3G/4G Radar” on page 22.

The scanner interconnection cable connects to the scanner using an 8 pin connector.

1. Insert interconnection cable connector into the socket on the scanner, rotating locking collar clockwise until it clicks.
2. Place the cable into the cable retention channel.
3. Install the two cable retainers (A) using the supplied screws. Tighten the screws gently.

- **Note:** If routing the interconnection cable down through a hole in the mounting surface concealed by the radar, install only the retainer nearest the interconnection cable socket.

- **Note:** If installing the scanner in a location where the dome radar cannot be placed upside down within the reach of the scanner cable, install the retainers on one side first. After the cable is laid into place swivel the retainers (B) over the retention channel and gently tighten the screws.

Warnings:
The retainers only help hold the cable in place. The retainers are not intended to provide strain relief.
Do not allow the cable to be pulled tight when fitted to the scanner.
Do not hang the scanner from the cable.

Scanner socket & Interconnection cable plug (scanner end)

<table>
<thead>
<tr>
<th>Pin-out</th>
<th>Wire color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Black</td>
<td>DC negative</td>
</tr>
<tr>
<td>2</td>
<td>Yellow</td>
<td>Power control</td>
</tr>
<tr>
<td>3</td>
<td>Green</td>
<td>Data Receive -</td>
</tr>
<tr>
<td>4</td>
<td>White / Green</td>
<td>Data Receive +</td>
</tr>
</tbody>
</table>

Scanner connection details

![Scanner connection diagram](image-url)
Installing the scanner

Use the supplied mounting template and tape it securely to the chosen location. Before drilling, check that:

- you have oriented the mounting template correctly so that the front of the scanner unit will face the front of the vessel
- clearance to other objects in all directions is >255 mm (10.0") for Halo20/20+ and >315 mm (12.5") for Halo24 from the center of the product as indicated on the mounting templates
- the thickness of chosen mounting surface must be at least 3 mm (0.11") and maximum 18 mm (0.7"). If the location is thicker, longer bolts than those supplied will be required

➤ Note: The bolts supplied are M8 x 30 mm. If you need to use longer bolts make sure they are marine grade stainless steel and allow for minimum of 8 mm (0.3") and maximum of 18 mm (0.7") of thread contact.

1. Use a 9.5 mm (3/8") drill bit to drill the four holes where shown on the mounting template.
2. Connect the scanner interconnection cable. Refer to “Scanner connection” on page 14.
3. If mounting bolts penetrate a roof or a closed dry cavity, use a marine high-grade sealant/adhesive compound to seal around the bolt holes. Do not fill holes directly with sealant.
4. Position the scanner carefully over the bolt holes so that they are aligned.
5. Place a lock washer and a plain washer onto each bolt.
6. Where necessary, apply a small amount of sealant to the bolt thread length that passes through the mounting surface. Avoid applying sealant to the thread inserted into the radar.
7. Insert bolts into the scanner’s threaded mounting holes and tighten securely.

➤ Note: The torque settings for the mounting bolts are 12 Nm – 18 Nm (8.9 lb ft – 13.3 lb ft).

➤ Note: Any extension should be made using appropriate marine grade cable, using tinned copper conductors.
Ethernet connection

The scanner can be connected either directly to a RJ45 Ethernet socket or to a 5-pin Ethernet socket via the supplied Ethernet adapter.

Key Description

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Display unit or Ethernet switch with a 5-pin Ethernet socket</td>
</tr>
<tr>
<td>B</td>
<td>Display unit or Ethernet switch with a RJ45 Ethernet socket</td>
</tr>
<tr>
<td>C</td>
<td>Ethernet cable plug (RJ45)</td>
</tr>
<tr>
<td>D</td>
<td>Ethernet adapter cable (RJ45 to 5-pin)</td>
</tr>
<tr>
<td>E</td>
<td>Power and power control wires</td>
</tr>
<tr>
<td>F</td>
<td>Interconnection cable to scanner</td>
</tr>
</tbody>
</table>

RJ45 Ethernet connector details

<table>
<thead>
<tr>
<th>Pin-out</th>
<th>Wire color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>White/Orange</td>
<td>Data transmit +</td>
</tr>
<tr>
<td>2</td>
<td>Orange</td>
<td>Data transmit -</td>
</tr>
<tr>
<td>3</td>
<td>White/Green</td>
<td>Data receive +</td>
</tr>
<tr>
<td>4</td>
<td>Blue</td>
<td>Not used</td>
</tr>
<tr>
<td>5</td>
<td>White/Blue</td>
<td>Not used</td>
</tr>
<tr>
<td>6</td>
<td>Green</td>
<td>Data receive -</td>
</tr>
<tr>
<td>7</td>
<td>White/Brown</td>
<td>Not used</td>
</tr>
<tr>
<td>8</td>
<td>Brown</td>
<td>Not used</td>
</tr>
</tbody>
</table>
Ethernet adapter cable

The ethernet adapter cable is used to connect the scanner to a 5-pin Ethernet connector. Use the supplied waterproof cable boot to seal the connection between the interconnection cable and the Ethernet adapter cable.

Waterproof cable boot

1. Slide the boot parts over the interconnection cable.

![Waterproof cable boot 1](image)

2. Connect the cables together first inserting the RJ45 socket, then turn and lock the cable boot (A) to the adapter cable (B).

![Waterproof cable boot 2](image)

3. Tighten the boot gland.

![Waterproof cable boot 3](image)

Ethernet adapter cable details

<table>
<thead>
<tr>
<th>5-pin plug</th>
<th>RJ45 socket</th>
<th>Wire color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Orange / White</td>
<td>Data transmit +</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Orange</td>
<td>Data transmit -</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Blue / White</td>
<td>Data receive +</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>Blue</td>
<td>Data receive -</td>
</tr>
<tr>
<td>5</td>
<td>Shield</td>
<td>--</td>
<td>Drain</td>
</tr>
<tr>
<td>--</td>
<td>4-5</td>
<td>--</td>
<td>Not used</td>
</tr>
<tr>
<td>--</td>
<td>7-8</td>
<td>--</td>
<td>Not used</td>
</tr>
</tbody>
</table>
Power connection

The unit is designed to be powered by a 12 or 24 V DC system. It is protected against reverse polarity, under voltage, and over voltage (for a limited duration of time).

A fuse should be fitted to the positive supply, for recommended fuse rating refer to "Technical specifications" on page 27.

Note: Connection via a switch panel and main isolator switch is assumed. Wiring directly to a vessel’s battery bank is not recommended.

The shield (bare wire) can be insulated from all other wires.

If interference is encountered from other on board electronics, the screen can be connected to a vessel hull ground to help reduce any interference, but it is not generally required.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Black DC negative</td>
</tr>
<tr>
<td>B</td>
<td>Red +12/24 V DC</td>
</tr>
<tr>
<td>C</td>
<td>Yellow Power control wire</td>
</tr>
<tr>
<td>D</td>
<td>Shield</td>
</tr>
<tr>
<td>E</td>
<td>Data cable</td>
</tr>
<tr>
<td>F</td>
<td>Interconnection cable to scanner</td>
</tr>
</tbody>
</table>

Recommended wire gauges for extending power wire length for a 12 V system:

<table>
<thead>
<tr>
<th>Extension wiring length</th>
<th>2 m (6.56 ft)</th>
<th>5 m (16.40 ft)</th>
<th>10 m (32.80 ft)</th>
<th>20 m (65.61 ft)</th>
<th>30 m (98.42 ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. AWG</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Min. Cross-section (mm²)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>2.50</td>
<td>2.50</td>
</tr>
</tbody>
</table>
Power control connection
The yellow wire in the power cable is used to control how the unit is turned on and off.

Power control by supply power
The scanner will turn on/off when power is applied/removed. Connect the yellow wire to the red wire after the fuse.

<table>
<thead>
<tr>
<th>Key</th>
<th>Wire color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Yellow</td>
<td>Power control wire, connected to supply power</td>
</tr>
</tbody>
</table>

Power on by switch
The unit will be turned on as long as the switch is closed.

<table>
<thead>
<tr>
<th>Key</th>
<th>Wire color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Yellow</td>
<td>Power control wire</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Power switch</td>
</tr>
</tbody>
</table>

Power controlled
The scanner can be connected to a common power control bus, and will turn on when power is applied to the bus by a display unit.
For Lowrance displays connect the yellow wire of the power connector cable to the bus.
For Simrad and B&G displays connect the yellow wire of the power connector cable to the bus and set all displays intended to power on/off the system to be master.
For more information, refer to the documentation supplied with your display unit.

<table>
<thead>
<tr>
<th>Key</th>
<th>Wire color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Yellow</td>
<td>Power control wire</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Master slave bus</td>
</tr>
</tbody>
</table>
Setup and configuration

Setup and configuration of the Halo Radar has been simplified compared to traditional pulse radars. There is no zero range adjustment (time delay), no warm up time and no burn in required.

Make the following settings before use. Refer to the documentation supplied with your display unit to locate the settings to be adjusted.

Adjust bearing alignment
Aligns the heading marker on the screen with the center line of the vessel. This ensures that MARPA targets and bearings taken with the EBL are displayed accurately.

Antenna height adjustment
The antenna height is the height of the antenna above the water line. Ensure the antenna height is set correctly, as it affects the sea clutter function. Do not set the height to zero.

Sector blanking
Used to stop the radar transmitting in the direction of structures that could cause unwanted reflections or interference to appear on the radar image. Four sectors can be set, the bearing of which is measured from the bow of the vessel to the center line of the sector.

Sidelobe suppression

Note: This control should only be adjusted by experienced radar users. Target loss in harbor environments may occur if this control is not adjusted correctly.

By default this control is set to Auto. Increase the suppression if there are false targets appearing as arcs radiating from either side of an actual target (typically large structures such as steel ships, container wharves, and large buildings).

Halo light

Note: Only available for Halo20+ and Halo24 Radars.
Determines the light level of the LED accent light.

⚠️ **Warning:** Halo Radar’s lighting may not be approved for use in your boating location. Please check your local boating regulations before turning the blue accent lights ON.
Maintenance

Clean the radome using soapy water and a soft cloth. Avoid using abrasive cleaning products. Do not use solvents such as gasoline, acetone, M.E.K etc. as this will damage the dome surface.
Replacing a Broadband 3G/4G Radar

Note: Some older displays may not be compatible with Halo 20, 20+ and 24 dome radars. For information contact Navico customer service.

An adapter cable must be used if the Halo Radar is to be connected using a pre-existing Broadband radar interconnection cable.

Before taking scanner up mast/pedestal:

1. Insert the connector of the adapter cable (A) into the scanner socket. Turn the locking collar to secure the connector.
2. Install the first retainer across the adapter cable using the supplied screws. Tighten gently.
3. Install the second retainer using one screw only, leaving it turned to one side so the cable channel is left open.

At mounting location:

4. Insert the connector of the existing interconnection cable (B) into the socket on the adapter cable. Turn the locking collar to secure the connector.
5. Swivel the second retainer over cable and gently tighten both screws.

RI-10 Radar interface box and wiring

It is recommended to remove the RI-10 Radar interface box. After removing the RI-10 Radar interface box, retuminate the connector. Use the appropriate tools to strip the 4G cable about 20 cm to allow the waterproof cable boot to slide over the RJ45 connector. Refer to “Waterproof cable boot” on page 17. Connect the 4G cable wires to power as described in “Power connection” on page 18 and “Power control connection” on page 19.

If removing the RI-10 Radar interface box and associated cables/wiring is difficult they may remain in place when a Halo 20/20+ or Halo24 is connected via the scanner adaptor cable, with no detriment to performance.

Check the Fuse/circuit breaker rating is as specified. Refer to “Technical specifications” on page 27.

Note: Halo dome radars do not require navigation data via Simnet or NMEA 2000 for MARPA or Velocity Track to operate.
Troubleshooting

Status LED
There is a status LED (A) at the back of the scanner that indicates the status of the scanner.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Flash repeat sequence</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Booting-up/Upgrading</td>
<td>Continuous ON</td>
<td>1 (highest)</td>
</tr>
<tr>
<td>Fault</td>
<td>Rapidly flashing</td>
<td>2</td>
</tr>
<tr>
<td>Low voltage</td>
<td>3 quick flashes then long gap</td>
<td>3</td>
</tr>
<tr>
<td>No Ethernet/Physical link</td>
<td>2 quick flashes then long gap</td>
<td>4</td>
</tr>
<tr>
<td>Operating normally</td>
<td>Slow flash</td>
<td>5</td>
</tr>
</tbody>
</table>

Note: If more than one condition exists simultaneously, the condition with the highest priority will be indicated.

Error messages
If problems persists check that the software is up to date. Check the following websites for the latest version of the radar and display unit software:
www.lowrance.com
www.simrad-yachting.com
www.bandg.com

Unknown Radar
Generally seen when overlaying the radar on the chart or when current display software is too old to support radar.

Recommendations
Ensure that the correct radar source is selected and configured in the display unit. Refer to the display unit’s documentation.

No radar
Indicates the Display and Radar have not established a network connection.

Recommendations
• Check the Radar Status LED
• Check that the Ethernet light is blinking at the radar and at the display (where applicable) or network expansion port
• Check/select radar in Radar Sources
• Power cycle the system
• Check all connections, ensuring plugs are seated properly and no corrosion is evident on pins
• Check voltage to the yellow power control wire
• Check supply voltage/current
• Check for faults or pinch spots on the Ethernet cable and replace it
• Try another Ethernet port on the display or switch
No scanner
Happens when Ethernet connection is established between radar and display, but an internal error in the scanner prevents normal radar operation.

Recommendations
- Check supply voltage/current
- If persistent, power cycle the system, check the scanner cable / RJ45
- Possible internal fault with the radar, contact service

No spoke data
Happens when Ethernet connection is established between radar and display, but an internal error in the scanner prevents normal radar operation.

Recommendations
- Check supply voltage/current
- If persistent, power cycle the system, check the scanner cable / RJ45
- Possible internal fault with the radar, contact service

Error codes
If the error code repeats, please refer to list below.

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000001</td>
<td>Radar saved settings corrupted</td>
<td>Radar will revert to factory defaults. Re-enter your settings including installation settings</td>
</tr>
</tbody>
</table>
| 0x0001000C | Scanner not detected | 1. Check the pedestal interconnection cable connections
| | | 2. Power cycle the radar |
| | | 3. Check input Voltage |
| 0x0001000D | Transmitter overheat (soft) | 1. Try changing to shorter ranges <6 NM
| | | 2. Switch to STBY, Allow unit cool |
| 0x0001000E | Transmitter overheat (hard) | Switch to STBY, Isolate power to the radar and contact service |
| 0x0001000F | Signal processing error | Unit should revert to STBY. Select transmit if problem persists. power cycle the radar |
| 0x00010017 | Scanner failure | Contact service |

Power supply

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00010010</td>
<td>Power supply overheating</td>
<td>Switch to STBY, Allow unit cool then retry</td>
</tr>
<tr>
<td>0x00010011</td>
<td>Power supply voltage error</td>
<td>Check scanner cable for connections for corrosion or damage</td>
</tr>
<tr>
<td>0x00010012</td>
<td>Power supply overload</td>
<td>Contact service</td>
</tr>
<tr>
<td>0x00010013</td>
<td>Power supply hardware fault</td>
<td>Contact service</td>
</tr>
<tr>
<td>0x00010014</td>
<td>Power supply comms fault</td>
<td>Contact service</td>
</tr>
</tbody>
</table>
| 0x00010019 | Low battery voltage (Supply voltage low) | 1. Recharge and check supply voltage
| | | 2. Restart the radar |
| 0x00010016 | LED Lighting fault | Turn accent lighting off then retry |
| 0x00010018 | Radar interface box fault | Check the interconnection cable for damage |

Mechanical

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00010001</td>
<td>Zero bearing sensor fault</td>
<td>Contact service</td>
</tr>
<tr>
<td>0x00010002</td>
<td>Bearing sensor fault</td>
<td>Contact service</td>
</tr>
<tr>
<td>0x00010015</td>
<td>Mechanical transmission fault</td>
<td>Contact service</td>
</tr>
<tr>
<td>0x00010003</td>
<td>Motor drive fault</td>
<td>Contact service</td>
</tr>
<tr>
<td>0x0001001A</td>
<td>Motor or antenna has stalled</td>
<td>Contact service</td>
</tr>
</tbody>
</table>
Dimensional drawings

Halo dome radar dimensions

Key Dimensions

<table>
<thead>
<tr>
<th>Key</th>
<th>Halo20/20+ Radar</th>
<th>Halo24 Radar</th>
<th>Broadband 3G/4G Radar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>223.0 mm (8.78")</td>
<td>225 mm (8.9")</td>
<td>280 mm (11.02")</td>
</tr>
<tr>
<td>B</td>
<td>510.0 mm (20.08")</td>
<td>610 mm (24")</td>
<td>488.6 mm (19.24")</td>
</tr>
<tr>
<td>C</td>
<td>233.0 mm (9.17")</td>
<td>233.0 mm (9.17")</td>
<td>233.0 mm (9.17")</td>
</tr>
<tr>
<td>D</td>
<td>141.5 mm (5.57")</td>
<td>141.5 mm (5.57")</td>
<td>141.5 mm (5.57")</td>
</tr>
</tbody>
</table>

→ Note: The bolt holes are located in the same position for each radar.
Halo dome radar bottom view

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cable entry area</td>
</tr>
<tr>
<td>B</td>
<td>Cable retention channel</td>
</tr>
<tr>
<td>C</td>
<td>Bolt hole M8 x 30 mm</td>
</tr>
<tr>
<td>D</td>
<td>LED accent light*</td>
</tr>
</tbody>
</table>

* Only available for Halo20+ and Halo24 Radars.
Technical specifications

Halo20/20+ Radar

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Halo20</th>
<th>Halo20+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental</td>
<td>IEC60945 : 2002</td>
<td>Operating Temperature: -25° to +55°C (-13° to +130°F) Relative humidity: +35° C (95° F), 95% RH</td>
</tr>
<tr>
<td>Max relative wind velocity</td>
<td>51 m/sec (100 Knots)</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC input</td>
<td>10.5-31.2 V with reverse polarity protection</td>
<td>Operating: 17-20 W (Range/mode dependent) Standby: 3.9 W (Typ.) at 13.8 V DC</td>
</tr>
<tr>
<td>Power consumption</td>
<td>Operating: 17-29 W (Range/mode dependent) Standby: 3.9 W (Typ.) at 13.8 V DC</td>
<td></td>
</tr>
<tr>
<td>Recommended fuse rating</td>
<td>5 A</td>
<td></td>
</tr>
<tr>
<td>Outside dimensions</td>
<td>Refer to "Dimensional drawings" on page 25</td>
<td></td>
</tr>
<tr>
<td>Scanner weight (no cable)</td>
<td>5.9 kg (13.0 lbs)</td>
<td></td>
</tr>
<tr>
<td>Radar and Antenna parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radar ranges</td>
<td>24 NM</td>
<td>36 NM</td>
</tr>
<tr>
<td>Rotation speed (mode dependent)</td>
<td>20 - 24 rpm (mode and MFD dependent)</td>
<td>20 - 60 rpm (mode and MFD dependent)</td>
</tr>
<tr>
<td>Transmitter frequency</td>
<td>X-band - 9.4 to 9.5 GHz</td>
<td></td>
</tr>
<tr>
<td>Transmitter source (warm-up time)</td>
<td>No Magnetron – all solid state. Instant On™</td>
<td></td>
</tr>
<tr>
<td>Plane of polarization</td>
<td>Horizontal Polarization</td>
<td></td>
</tr>
<tr>
<td>Transmitter peak power output</td>
<td>10 W</td>
<td>25 W</td>
</tr>
<tr>
<td>Minimum range</td>
<td>6 m (19.7 ft)</td>
<td></td>
</tr>
<tr>
<td>Sweep repetition frequency</td>
<td>700-2400 Hz (mode dependent)</td>
<td></td>
</tr>
<tr>
<td>Pulse length</td>
<td>0.04 - 64 usec +/- 10%</td>
<td></td>
</tr>
<tr>
<td>Sweep bandwidth</td>
<td>48 MHz max</td>
<td></td>
</tr>
<tr>
<td>Horizontal beam width (Tx and Rx antenna)</td>
<td>4.9° nominal (-3 dB width)</td>
<td></td>
</tr>
<tr>
<td>Target Separation Control</td>
<td>N/A</td>
<td>OFF: 4.9°+/-10% (-3 dB width nominal) LOW: ~4.3°+/-10% (-3 dB width nominal) MED: ~3.2°+/-10% (-3 dB width nominal) HIGH: ~2.5°+/-10% (-3 dB width nominal)</td>
</tr>
<tr>
<td>Vertical beam width (Tx and Rx antenna)</td>
<td>25° (-3 dB width nominal)</td>
<td></td>
</tr>
<tr>
<td>Side lobe level (Tx and Rx antenna)</td>
<td>Below -18 dB (within ±10°); Below -23 dB (outside ±10°)</td>
<td></td>
</tr>
<tr>
<td>Noise figure</td>
<td>Less than 5 dB nominal</td>
<td></td>
</tr>
</tbody>
</table>

Communications/Cabling

| Protocol | Ethernet 100Base-T |
| Max. interconnecting cable length | 30 m (98.5 ft) – available as option |
Halo24 Radar

Characteristics

<table>
<thead>
<tr>
<th>Environmental</th>
<th>IEC60945 : 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>-25° to +55°C (-13° to +130°F)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>+35° C (95° F), 95% RH</td>
</tr>
<tr>
<td>Waterproof</td>
<td>IPX6</td>
</tr>
</tbody>
</table>

| Max relative wind velocity | 51 m/sec (100 Knots) |

Power

DC input	10.5-31.2 V with reverse polarity protection
Power consumption	Operating: 17-29 W (Range/mode dependent)
	Standby: 3.9 W (Typ.) at 13.8 V DC
Recommended fuse rating	5 A
Outside dimensions	Refer to “Dimensional drawings” on page 25
Scanner weight (no cable)	6.9 kg (15.22 lbs)

Radar and Antenna parameters

Radar ranges	100 m (328 ft) to 89 km (48 nm) with 18 range settings (nm/sm/km)
Rotation (mode dependent)	20 - 60 rpm (mode and MFD dependent)
Transmitter frequency	X-band - 9.4 to 9.5 GHz
Transmitter source (warm-up time)	No Magnetron – all solid state. Instant On™
Plane of polarization	Horizontal Polarization
Transmitter peak power output	25 W
Minimum range	6 m (19.7 ft)
Sweep repetition frequency	700-2400 Hz (mode dependent)
Pulse length	0.04 - 64 usec +/- 10%
Sweep bandwidth	48 MHz max
Horizontal beam width (Tx and Rx antenna)	3.9° nominal (-3 dB width)
Target Separation Control	OFF: 3.9° +/-10% (-3 dB width nominal)
	LOW: ~3.4° +/-10% (-3 dB width nominal)
	MED: ~2.5° +/-10% (-3 dB width nominal)
	HIGH: ~2.0° +/-10% (-3 dB width nominal)
Vertical beam width (Tx and Rx antenna)	22° (-3dB width nominal)
Side lobe level (Tx and Rx antenna)	Below -18 dB (within ±10°); Below -24 dB (outside ±10°)
Noise figure	Less than 5 dB nominal

Communications/Cabling

| Protocol | Ethernet 100Base-T |
| Maximum interconnecting cable length | 30 m (98.5 ft) – available as option |
Accessories

The most up-to-date accessories list is available at:

- www.lowrance.com
- www.simrad-yachting.com
- www.bandg.com